

fitterpp: Simplified Parameter Fitting With Advanced Capabilities

fitterpp (pronounced “fitter plus plus”) fits a parameterized function to data.
Some key features are:

	Simplicity. Users only provide a parameterized function, data, and descriptions of parameters.

	Sophistication. Provides for running several fitting algorithm in succession, and starting from multiple initial values.

	Statistics. Provides information on the runtime and quality of parameter fits.

Contents:

	Core Concepts

	Fitting Basics

	Adanced Fitting

	Methods
	Fitterpp

Core Concepts

Many times we want to fit a parameterized function to data.
For example, suppose that we have an array of data
y[n] that we want to fit as a linear function of the variables
x[n],
where the n-th element of each array.
That is, we want to find the slope a and the y-intercept b
such that
a*x[n] + b is as close as possible to y[n].
We define “as close as possible” to mean that the
sum of the squared difference between y[n] and
a*x[n] + b is as small as possible.

Fitting is the process of finding parameters a and b
that make the fitting function as close as possible to the observational
data.
Thus, to perform fitting, we must specify:

	the fitting function;

	the parameters of the function that are to be adjusted;

	observational data;

Fitting Basics

This section describes the basic usage of fitterpp.

	To install the package use:
	pip install fitterpp

To use the package in your code, include the following statement
at the top of your python module:

import fitterpp as fpp

To do fitting, you must first write a parameterized function.
For example, consider the following function for a parabola
the has two parameters:
* where the parabola is centered on the x-axis
* a multiplier for how quickly the y-value increases

def calcParabola(center=None, mult=None, xvalues=range(20), is_dataframe=True):
 estimates = np.array([mult*(n - center)**2 for n in xvalues])
 if is_dataframe:
 result = pd.DataFrame({"row_key": xvalues, "y": estimates})
 result = result.set_index("row_key")
 else:
 result = np.array([estimates])
 result = np.reshape(result, (len(estimates), 1))
 return result

Note that all arguments to calcParabola are specified using keywords.
Fitterpp requires both an array and DataFrame output for efficiency reasons and to make
the user function self-describing.
The keyword argument is_dataframe specifies whether to return a numpy array or a DataFrame.
The array should contain only the data values.
The DataFrame must:

	contain columns names that match some of the names in data provided to Fitterpp;

	have an index with values that have a non-null intersection with index values in the data provided to Fitterpp.

You will also need to describe the parameters to be fitted.
In our example, these are center and mult.
You use
lmfit.Parameters
to describe these parameters, as shown below.

parameters = lmfit.Parameters()
parameters.add("center", value=0, min=0, max=100)
parameters.add("mult", value=0, min=0, max=100)

Last, you must provide data that is used to fit the parameters.
The data should be a pandas DataFrame that has some (or all)
of the columns present in the output of the function to be fit.

print(data_df)
row_key y
0 203.602263
1 168.826647
2 129.106718
3 106.392522
4 76.568092
5 53.599780
6 32.178451
7 27.475269
8 17.673933
9 5.571118
10 9.088864
11 4.040736
12 10.043712
13 20.858908
14 32.427186
15 53.417786
16 80.242909
17 104.973683
18 132.189584
19 169.439043

and outputs
a list (or list-like) of floats that are the difference between
what the function computed for these parameter values and observational
data.

To do a fit, use:

fitter = fpp.Fitterpp(calcParabola, parameters, data_df , methods=methods)
fitter.execute()

To see the resulting fits:a

>print(fitter.final_params.valuesdict())
{'center': 9.991226336877833, 'mult': 2.072849009501976}

The figure below displays the parabola (red line plot)
for the above fitted parameter values
along with the fitting data (blue scatter plot).

[image: _images/fitting_plot.png]

Adanced Fitting

This section describes how to use advanced features of fitterpp.
The section assumes that you have read the
basic tutorial. Specifically, you should be
familiar with the following the calcParabola function
we used as an example of fitting

def calcParabola(center=None, mult=None, xvalues=XVALUES):
 estimates = np.array([mult*(n - center)**2 + for n in xvalues])
 return pd.DataFrame({"x": xvalues, "y": estimates})

and the following script that fits the observational data data_df
to the parameters center and mult in calcParabola.

Import the required libraries
import lmfit
import fitterpp as fpp
Construct the parameter objects
parameters = lmfit.Parameters()
parameters.add("center", value=0, min=0, max=100)
parameters.add("mult", value=0, min=0, max=100)
Run the fitting algorithm
fitter = fpp.Fitterpp(calcParabola, parameters, data_df)
fitter.execute()
Display the fittted values
print(fitter.final_params.valuesdict())

A first consideration in more advanced fitting is to have more
control over the way in which fitterpp searches for parameter
values.
This is accompished by making use of an optional keyword parameter
in the constructor, fpp.Fitterpp.
You can specify any algorithm that is used by lmfit.minmize.
To simplify common usage, fitterpp provides global constants
for the “leastsq” and “differential_evolution” algorithms.

Spsecify the methods used for fitting
methods = fpp.Fitterpp.mkFitterMethod(
 method_names=fpp.METHOD_DIFFERENTIAL_EVOLUTION,
 method_kwargs={fpp.MAX_NFEV: 1000})
fitter = fpp.Fitterpp(calcParabola, parameters, data_df,
 methods=methods)

A second consideration in more advanced fitting is the tradeoff between
the followin:
* quality of the fit and
* runtime of the fitting codes.

Runtime of the fitting codes is typically measured in seconds.
We quantify the quality of the fit by the sum of squares of the
residuals or RSSQ.
If there is a perfect match between the observational data and the
estimates produced by fitted parameters, then
RSSQ is 0.
Larger values of RSSQ indicate a fit that with lower quality.
Many times a fitting problem involves trade-offs between quality and runtime.

You can get a basic understanding of the quality of the fit
from the fitter report.
Building on the example in the basic tutorial,
As before, we are fitting the parameters of calcParabola.
To use this feature, first perform a fit and then use

print(fitter.report())

This produces the output below:

[[Variables]]
 mult: 2.0102880244080366
 center: 10.000857728276536
[[Fit Statistics]]
 # fitting method = differential_evolution
 # function evals = 921
 # data points = 20
 # variables = 2
 chi-square = 2.54104032
 reduced chi-square = 0.14116891
 Akaike info crit = -37.2631740
 Bayesian info crit = -35.2717095

Of most interest here is the number of function evalutions–921.
This provides some insight into the extent of the search
for fitting values.

The quality plot indicates how RSSQ changes across
iterations.
Sometimes, a large fraction of iterations do not result
in reductions in RSSQ.
To generate the quality plot use:

fitter.plotQuality()

which produces the plot

[image: _images/quality_plot.png]
Note that the y-axis of the plot is scaled to show RSSQ values within
ten times the minimal RSSQ.
From this plot, we observe that (a) differential evolution rquires about
800 iterations before RSSQ is reduced substantially; and (b) gradient descent
(“leastsq”) provides little reduction in RSSQ.

Finally, the performance plot provides insight into
the causes of long runtimes.
To generate the performance plot use:

fitter.plotPerformance()

which produces the plot below.

[image: _images/performance_plot.png]
From this we conclude that the time required to fit the parameters
is large due to the large number of iterations of
differential evolution.

Methods

	
class fitterpp.Fitterpp(user_function, initial_params, data_df, method_names=None, max_fev=1000, num_latincube=None, latincube_idx=None, logger=None, is_collect=False)

	Implements an interface to parameter fitting methods that provides
additional capabilities and bug fixes.
The class also handles an oddity with lmfit that the final parameters
returned may not be the best.

If latincube_idx is not None, then use a precomputed latin cube position.

Usage

fitter = fitterpp(calcResiduals, params, [cn.METHOD_LEASTSQ])
fitter.fit()

	
static Fitterpp.mkFitterppMethod(method_names=None, method_kwargs=None, max_fev=1000)

	Constructs an FitterppMethod
Parameters
———-
method_names: list-str/str
method_kwargs: list-dict/dict

Returns

list-FitterppMethod

	
Fitterpp.report()

	Reports the result of an optimization.

Returns

str

	
Fitterpp.plotQuality(is_plot=True)

	Plots the quality results

Parameters

is_plot: bool (plot the output)

Returns

	dict
	key: method name
value: list-float (residual sum of squares)

	
Fitterpp.plotPerformance(is_plot=True)

	Plots the statistics for running the objective function.

Parameters

is_plot: bool (plot the output)

Returns

	pd.DataFrame
	
	Columns
	tot: total_times
cnt: counts
avg: averages

index: method

Index

 F
 | M
 | P
 | R

F

 	
 	Fitterpp (class in fitterpp)

M

 	
 	mkFitterppMethod() (fitterpp.Fitterpp static method)

P

 	
 	plotPerformance() (fitterpp.Fitterpp method)

 	
 	plotQuality() (fitterpp.Fitterpp method)

R

 	
 	report() (fitterpp.Fitterpp method)

 nav.xhtml

 Table of Contents

 		
 fitterpp: Simplified Parameter Fitting With Advanced Capabilities

 		
 Core Concepts

 		
 Fitting Basics

 		
 Adanced Fitting

 		
 Methods

 		
 Fitterpp

 		
 Fitterpp.mkFitterppMethod()

 		
 Fitterpp.report()

 		
 Fitterpp.plotQuality()

 		
 Fitterpp.plotPerformance()

_static/minus.png

_static/plus.png

_static/file.png

_images/performance_plot.png
0.6

0.5

0.4

0.3

0.2

0.1

0.0

Total time

- Tot

.0012

.0010

.0008

Average time Number calls
- Avg = Cnt

800
600
400
200

0 ——

ot LS

_images/quality_plot.png
55Q

20

10

differential_evolution leastsq
40
30
20
10
0
200 400 600 800 4
iteration iteration

_images/fitting_plot.png
200

150

100

50

00 25 50 75 100 125 150 175

